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In addition to the derivative of xn, the derivatives of ln(x) and ex form the three centerpieces of 
differential equations. Differential equations is popularly considered a “post-calculus” math. 
I have already shown that is entirely backward. Calculus is based on differential equations. 
 
Linear differential equations deal primarily with exponential and sinusoidal functions. To call 
them “linear” seems strange for those unfamiliar with the concept of a differential equation. 
Wikipedia’s article “Linear differential equation” will (hopefully) clear up the concept. 
 
Perhaps the simplest example of a linear differential equation is the model for radioactive decay: 
 

 
 
The function N(t) = e 

–kt has the standard derivative of N′ (t) = –k N(t). Linear differential 
equations are linear in a higher sense of the term than normal linear equations. 
 
Miles Mathis repudiates the diminishing interval for finding slope on a curve. The fact that 
curvature does not always approach 0 under magnification (see milesmathis.com/expon.html) 
feels like one serious blow against standard methods. Mathis believes the differential should 
remain constant—as part of the logical definition of differentiation. 
 
Mathis also challenges the standard derivatives of ln(x) and ex. He tries to find the slope of an 
exponential curve the way as for linear equations. He states thusly (milesmathis.com/ln.html): 
 
As with the exponential functions, to find a slope we just find an average…like this: 
 
slope @ (x,y) = [y@(x + 1) - y@(x - 1)]/2 
 
It is true that an exponential curve can never be straightened through normal differentiation. The 
underlying straight line is the logarithm, by definition. However, Mathis’ operational definition 
of slope cannot always work for equations with singularities. What Mathis has actually 
discovered is that some equations can be differentiated in multiple ways. What is appropriately 
called “the” derivative is that which is most widely useful. 
 
In a static problem, slope has to be measured with a curve of discrete line segments. Measuring 
change in a meaningful and repeatable way in the real world means finding a reference ∆x and 
sticking with it. When a comet takes a hyperbolic trajectory, the data for displacement relative to 
time come from a series of individual measurements. Mathis’ slope formula is, indeed, how our 
data would measure the tangent of the comet’s trajectory. 
 
However, the measured tangent is only an approximation of the true tangent. The static data must 
be converted to the true behavior of the object. Although we measure a single slope within a 
given interval, an object traveling on the curve runs through a continuous range of slopes 
within that period. This range of slopes must be summed over and averaged with the 
appropriate factor. Differentiation and integration really are just two sides of the same coin. 
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Although contesting the derivatives of exponential and logarithmic functions, Mathis concurs 
with the derivatives of sine and cosine (milesmathis.com/trig.html). In my piece on trigonometric 
functions (directly preceding this paper), I demonstrate how trigonometry proves the standard 
derivative for the exponential function. I repeat the key points down below. 
 
Hyperbolic sines and cosines are, respectively, the y- and x-values of the “unit hyperbola,” where 
x2 – y2 = 1. Whereas the angles of a circle are based on circumference, the angles of a hyperbola 
are based on area between a branch of the hyperbola and the nearby asymptote. As a bonus, 
hyperbolic sines and cosines can be expressed in closed numerical form: 
 

€ 

sinh x = 1
2 ex − e−x( )  

€ 

cosh x = 1
2 ex + e−x( )  

 

€ 

cosh2 x − sinh2 x = 1
4 e−2x e4 x + 2e2x + 1( ) − 1

4 e−2x e4 x − 2e2x + 1( ) 
 

 

€ 

= 1
4 e−2x e4 x + 2e2x + 1( ) − e4x − 2e2x + 1( )[ ] 

 

 

€ 

= 1
4 e−2x e4x + 2e2x + 1 − e4 x + 2e2x − 1[ ]  

 

 

€ 

= 1
4 e−2x 2e2x + 2e2x[ ]  

€ 

= 1
4 e−2x 4e2x[ ] 

€ 

= e−2x e2x[ ] 
 

 

€ 

= 1 
 
Hyperbolic sine and cosine are, indeed, written in the proper terms for the identity. Also of 
interest is that when sinh(x) = 1, cosh(x) = 

€ 

2 . This is a direct connection with the silver ratio. 
 
It is a short step, now, to prove the standard derivative of ex. 
 

€ 

cosh x + sinh x = 1
2 e−x e2x + 1( ) + e2x − 1( )[ ] 

€ 

= 1
2 e−x e2x( ) + e2x( )[ ]  

 

 

€ 

= 1
2 e−x 2e2x[ ]  

€ 

= e−x e2x[ ]  

€ 

= ex 
 
  

€ 

 ex = cosh x + sinh x  
 

€ 

ex( )′ = sinh x + cosh x  
 

€ 

∴ ex( )′ = ex

 
 
All the properties of the natural base (e) come directly from its role in forming solutions to 
particular algebra problems. The reason e is still transcendental is that its numerical solution 
cannot be found directly from a finite number of polynomial terms. 
 
Whereas the golden mean (phi) represents a static equilibrium, the natural base represents a 
dynamic equilibrium. The golden mean comes out of a static algebraic problem, where simple 
lines are being measured relative to one another. The exponential function comes out of a 
dynamic algebraic problem, where the object of measurement is a trajectory. 
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The Taylor series of a function is a power series that matches the respective differential equation. 
Expanding the exponential function into a series is a straightforward process: 
 

   
 

    
 
For the series expansion of ex, the derivative is simply… 
 

   
 
As per the rules of power derivatives, the derivative of x 

k is simply k x 

k–1. The derivative of 1 is 
zero. We are not just reducing the power of each term by 1: We are reducing each factorial in the 
denominator the same way. 
 
Mathis is right to suspect that the methods that work for normal polynomial derivatives are 
widely abused in finding derivatives of other—often non-algebraic—functions. However, the 
exponential function can be decomposed into a polynomial. The function is transcendental 
simply because no algebraic equivalent can be written in closed form. 
 
Mathis is also right to conclude that exponential acceleration is physically impossible. It can 
be approximated in the physical world, but only the appropriate fractal of power functions 
can achieve this. The universe never could have expanded with true exponential acceleration. 
 
Here are the standard air-resistance equations for the trajectory of a projectile 
(farside.ph.utexas.edu/teaching/336k/Newton/node29.html): 
 

  
 

      

  
 
If exponential acceleration is impossible, how do we explain this apparent exception to his rule? 
Isn’t exponential deceleration just acceleration with a minus sign? Again, the exponential curve 
is a limit—not something that is truly reached. Likewise, no physical circle has a circumference 
of exactly π times its diameter. 
 
Finally, exponential deceleration—look closely—follows a very different power-acceleration 
pattern. Unlike exponential growth, exponential decay is asymptotic to real-world conditions. 

€ 

xk−1

k − 1( )!k=1

∞

∑
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As Mathis has demonstrated before, the charge field interferes with itself. In the third paper of 
mine that Mathis has published (“The charge field explains fractals,” howell3(2).pdf) I use 
fractals based on the metallic-mean (a.k.a. “silver mean”) family to explain absorption bands of 
plants and photosynthetic bacteria. I now pick up my analysis of fractals where I left off. 
 
The charge field produces the fractal of primary and side effects that would approximate 
exponential decay of velocity or acceleration. This explains Brownian motion, which Mathis has 
also covered (milesmathis.com/brown.html). The fractal effects of the charge field contribute to 
an even more complex fractal that describes the collisions of objects with air particles. 
 
Although air resistance is popularly considered a sum of random particle collisions, the order we 
see in “chaos” demonstrates that the collisions follow understandable patterns. The problem is 
that we can never measure anything to infinite precision except objects defined as units. The 
numbers of atoms in macroscopic situations are so great as to make them, for practical purposes, 
amounts of stuff rather than numbers of items. 
 
Another example of exponential decay in the real world is radioactive decay. This phenomenon 
is explained in the same basic way as the behavior of air resistance. The only difference is that 
instead of atomic and molecular particles, the effect comes from subatomic particles. Alpha 
decay comes from “erosion” by the general charge field. Beta decay comes from collisions of 
“positrons” (simply upside-down electrons) with neutrons, the aftermath of which creates the 
illusion of “oscillating neutrinos.” In the following papers, Mathis explains how collisions by 
photons and electrons cause alpha and beta decay: 
 
www.milesmathis.com/nuclear.pdf http://milesmathis.com/quark.html 
 
We already know that the products of beta decay can promote reverse beta decay. The popular 
interpretation gives credit to the neutrino—rather than the positron (see Wikipedia, 
“Neutrino Experiment”). This is just one more sign that most physicists are so buried by their 
math they cannot see the light of day. 
 
Exponential deceleration happens for the same reasons as exponential decay of atoms: 
collision with a gas of particles. Any normal particle gas produces the appropriate fractal. 
Exponential growth or decay is the simplest form of “fractal acceleration.” 
 
Newton’s law of cooling is also a form of exponential decay: 
 

  (see Wikipedia, “Convective heat transfer”) 
 
Differential equations accomplish the basic work in explaining why e really is the “natural” base. 
Even so, gaining a full appreciation of this number’s nature still requires expanding the 
exponential function into its power series. As the Taylor series demonstrates, simple 
exponential growth stands for the state where all orders of change equal 1. All orders of 
change are perfectly optimized to one another. All terms in the power series have an ultimate 
derivative of 1. It is the exponential “identity”—akin to the unit 1. 
 
The curve of exponential decay is where all orders of change alternate between ±1. This is a 
sort of net-zero effect. Exponential decay in acceleration is far more likely than exponential 
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growth because the interference pattern is far more natural to generate. Exponential decay is a 
bounded process while exponential growth is an unbounded process. This is why exponential 
deceleration is pervasive while exponential acceleration is basically unheard of. Basic 
exponential decay is another sort of exponential “identity”—sharing properties of –1 and 0. 
 
The raison d’être of calculus is to straighten out an interval on the curve in order to find the 
tangent. Power functions of finite terms (normal polynomials) are unique in that a finite number 
of differentiations bring forth a line of constant value, which is known as the value and order of 
acceleration. Most functions do not reveal a straight-line relationship in this straightforward a 
manner, but normal exponentials reveal such a relationship through differential equations. 
 

Specifically, 

€ 

dy
dt

= k ⋅ y(kt)  
 
In log-linear view, the exponential graph forms the line y = kt. The differential equation above 
mimics this relationship down to a T. Such a correspondence apparently falls right out of the 
very meaning of exponential growth. It might not seem, at first, that exponential functions have 
an algebraic relationship to time; but they, in fact, do. 
 
Through algebraic differentiation, we have finally straightened out the curve. The mathematician 
just has to think in terms of “dynamic” numbers (dy/dt) rather than “static” numbers (y and t). 
 
The golden ratio and its close relatives are the epitome of static equilibrium. The exponential 
function is the highest order of equilibrium in a dynamic world. We could already tell this 
through my differential-equation analysis, but the Taylor series expands on the physics, clarifies 
them, and corroborates our earlier work. 
 
Down below is the Taylor series for the general exponential function: 
 

 
 
Differentiating the second term yields the slope of the log-linear graph. The nth-order 
acceleration in this trajectory equals kn. Although exponential acceleration does not, in general, 
seem possible to approach, exponential deceleration is perfectly easy for nature to approximate. 
The Taylor series for a negative-exponential function alternates between + and – signs, like so: 
 

    
 
As already highlighted, the alternation of signs makes for some sort of “net-zero” effect in the 
orders of acceleration. Different items produce different log-linear slopes for decay because the 
exact feedback loops that promote the stable decay rate vary with the object and its interaction 
with the surrounding particle fluid (liquid, gas, or photons). 
 
Exponential growth is unbounded. It is not normally stable. But exponential decay is perfectly 
bounded. It is a dynamic equilibrium of the “random” particle actions. It is the balance behind 
the apparent imbalance. 
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Rarely encountered—but not quite unheard of—is coupled exponential growth, where y = xx
 . 

For a proper physical understanding, the more appropriate notation is probably y = e^(x lnx) . 
In this case, the decay “constant” depends on time just like the main part of the exponent. 
This function expands to the following power series: 
 

 
 
Like with the other power series, the second term stands for the slope of the log-linear graph. 
The coupled-exponent graph behaves quasi-logarithmically, rather than displaying logarithmic 
behavior in the familiar sense. For very large values of x, lnx has a vanishingly small effect 
relative to x, but its effects never become negligible. 
 
The reciprocal of the coupled-exponential function— x 

–x —mimics the Taylor series for normal 
exponential decay. 
 

 
 
Wolfram Alpha presents the steps for finding the derivative of xx

 : 
 

 
 
That new term on the outside is the first two terms of the Taylor series for the original function. 
Here is the derivative of x–x

 : 
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This imitates the derivative of e–x, in that an extra minus sign occurs in front. 
 
The coupled-exponential function might first seem to be a rare entity, but is well known to 
engineers who specialize in complex systems. This function and closely related entities are a 
classic hallmark of turbulent environments, where dynamic equilibrium takes a more complex 
meaning than generally concerns the layman. 
 
Coupled exponentials, for example, are central to some statistical models of vortex filaments. 
Google Books1 offers samples of one paper titled “A Statistical Law of Velocity Circulations in 
Fully Developed Turbulence” (Yoshida & Hatakeyama). In Section #5—A model of the 
statistics of vortex filaments— 
 
The authors considered a simplified model of the statistics of velocity circulation caused by a random distribution of 
vortex filaments in turbulence in [7]. Here we neglect the weaker back ground vorticity field. 
 
I will let the authors describe their model in their own words: 
 

 

 
 
They have a little more left to say, but this is the pertinent part for our own discussion. The 
bottom line is the first sentence in that last paragraph: 

                                                        
1 IUTAM Symposium on Geometry and Statistics of Turbulence (pp. 145–50) 
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The tail of a compound Poisson distribution [P] in general decays with [ P(|circulation| ≥ x ) 
approaching, for high values of x] exp(–x log x / c), where c  depends on [probability distribution] σ  and it 
decays slower than that of Gaussian distributions. 
 
Functions like the one above seem unusual only to the layman, who is not a math engineer. 
For those who are unfamiliar with Poisson distributions, let alone compound ones, here are some 
graphs for a rudimentary understanding. Let’s start 

2 by viewing a normal (Gaussian) distribution: 
 

 
 
That’s the old bell curve—used to “normalize” grade curves and IQ tests. Those probability 
curves that do not fit the “normal” pattern will likely fit the Poisson distribution: 
 

 
 
Poisson distributions are really three-dimensional functions (at the least); their domain is a plane 
rather than a line. The proper probability function could very well follow an oblique path to the 
two axes of the domain (perhaps the gradient). 
 

                                                        
2 http://paulbourke.net/miscellaneous/functions/ 



  9 

It is already known that nuclear decay rates can vary under special conditions. The sun can cause 
seasonal variations 

3, and so can ionization 
4. I recommend a 3D graphical analysis of the 

exponential decay curve in relation to the possible nuclear decay “constants.” 
Finally, here is a sample of a compound Poisson distribution 

5
 : 

 

 
 

 
 
 

 
 

 
 

 

                                                        
3 http://www.physorg.com/news202456660.html 
4 http://www.aip.org/pnu/1992/split/pnu096-1.htm 
5 Aalen, Odd O. (1992). Modelling heterogeneity in survival analysis by the compound Poisson distribution. 
Annals of Applied Probability, 2(4), 951–72. 
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FIG. 5. Density of the continuous part of the compound Poisson distribution for a = 10, y = 1 

and two values of S. 

values of 8. This seems to hold for most a between 1 and 2. In a sense the 
divergence to oo when z approaches 0 can be viewed as a remainder of the atom 
at 0. 

The case a = 2 is illustrated in Figure 2. Apparently the densities are 
unimodal, monotonically decreasing from a finite value at 0 when 8 is large, 
but having a positive mode for small 8. 

The case a > 2 is more complicated. Three-dimensional plots are shown for 
a0 equals 4 and 10; see Figures 3 and 4. In the first case the distributions 
appear to be unimodal with a positive mode. In the second case there is a 
" valley" in the figure, implying cases with two modes. This is also illustrated 
in Figure 5. Drawing plots for larger values of a reveals several modes arising. 
This is not surprising since the distributions converge towards Poisson distri- 
butions when a increases. Hence one would expect multiple modes to arise, 
eventually converging into the discrete atoms of the Poisson distribution. 

What is the practical implication of these multiple modes when the hetero- 
geneity model is applied? Preliminary experience with statistical fitting of the 
heterogeneity model have given values of a between 1 and 5, for which the 
densities would be unimodal, or nearly so. So large values of a are perhaps not 
very common in practice. But if they do occur, then the resultant multiple 
modes would mean that the population should consist of several subgroups 
with quite distinct risk levels. This may occasionally be true, but it should be 
documented by other information too, and not only by the fit of a model. 

From all three-dimensional figures it is apparent how the normal distribu- 
tion seems to arise for values of 8 very close to 0. This is in accordance with 
the asymptotic theory mentioned earlier. 
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ASYmPTOTIC STABLE DISTRIBUTION. For a < 1 the class of stable distribu- 

tions appears as a limit when S and -y goes jointly to o in an appropriate 

fashion; see Hougaard (1986a) for details. 

3. Shape of the compound Poisson distributions. When using the 

compound Poisson distribution, it is important to be acquainted with its 

properties, for instance the shape of the density of the absolutely continuous 

part. There does not appear to be much information on this in the literature, 

and therefore some discussion and several illustrative figures are given here. 

Of the three parameters, -y is merely a scale parameter, while the other two, 

a and 6, determine the shape of the distribution. WVhen a < 1 it has been 

proven by Hougaard (1986a) that the distributions of Z are unimodal. For 

a > 1 the positive probability at 0, combined with an absolutely continuous 

density, implies that the distribution is not unimodal [see also Bar-Lev and 
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2 

FIG. 1. Densities of the continuous part of the compound Poisson distribution for a = 1.5. By 

uary7ing the parameter 6 the family of densities is shown as a surface, where a particular density is 

obtained by cutting the surface parallel to the axis marked z. In this case the densities appear 

unimodal; but see the text for qualifications. [Technically, the figure shows f(z; 1.5, 6,1) for 

0.01 < z < 2 and 0.05 < 8 < 2 with grid size 0.069 X 0.067.] 
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cuts through the resulting surface parallel to the z-axis. The advantage of this 
way of plotting is that it gives a good impression of how the densities vary with 
the parameter S. The three categories enumerated above will be discussed 
separately. 

For the case 1 < a < 2, I have chosen a0 = 1.5 as a representative value. 
The corresponding plot is presented in Figure 1. Considering cuts through the 
surface parallel to the axis marked z, one sees that the densities appear to be 
unimodal, decreasing monotonically from a mode at 0 when 8 is large, and 
apparently having a mode larger than 0 when 8 is small. From considerations 
above one knows that the value at z = 0 is in all cases oo. Hence the impression 
of unimodality cannot be correct for small values of 8. One-dimensional plots 
with finer detail show that the densities are "nearly" unimodal also for small 
8, except that, when z approaches 0, the density curve reaches a minimum and 
then goes off towards oo. This latter part, however, generally constitutes a very 
small part of the density when considering its integral. Hence, for practical 
purposes, the densities can be considered to be nearly unimodal even for small 

1~~~~~~~~~~~~~~~. 
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FIG. 4. Densities of the continuous part of the compound Poisson distribution for a = 10; see 
Figure 1 for details. 
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This function really is compound: it covers four dimensions instead of just three. The domain 
now fills all the axes of physical space. The ultimate greatness about supercomputers is that they 
permit, at long last, something resembling a God’s-eye view of nature. 
 
 
The order encountered in “chaos” is ultimate proof that nature is not arbitrary or irrational. 
Nature simply works in mysterious ways that have to be decoded. Proverbs 25:2 is scientific 
wisdom as much as it is religious wisdom: 
 
It is the glory of God to conceal a matter; to search out a matter is the glory of kings. 
 
Mathis and I have different creeds; I am orthodox Christian while he is non-religious. But we 
both agree that nature reveals its secrets only to those who pay their due respects. The more 
modern physicists have insulted the wisdom of nature, the more their thinking has become futile. 
 
The final section of this treatise is a bonus piece, where I demonstrate a way to pull out the 
proper derivative of the exponential function—right from Mr. Mathis’ slope formula. This 
experiment was actually what kick-started my whole analysis of the exponential. 
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The underlying straight line is the key to giving a properly weighted average when finding the 
slope of an exponential curve. I believe Mathis has revealed that some equations—such as 
exponential equations—can be differentiated in multiple ways. The differentiation I seek here is 
that which directly reflects the linearity of ln(ex). 
 
For a given function, the slope  follows this equality: 
 

 

 

 
 
The a stands for the coefficient in front of x—as in y = ax or y = e 

ax. A coefficient (a) in front of x 
stretches the run (∆x = 2a) by a factor of a. An extra a must appear in the numerator for a 
normalized interval of 2. In the simplest problems, ∆x = 2 (a = 1). 
 
K is what I call the “weighting operator.” This operator will account for the underlying straight 
line in the relation between  and . Strict linear equations will have K = 1. 
 
Here is the proof for y = ax: 

  
 

   
 

    

 

 
Of course, the slope for y = ax is simply a. Therefore, K = 1. 
 
It is now time to prove that the slope of y = e 

ax really is y′ = a eax. Perhaps for the first time, this 
equality has been proven through keeping ∆x constant rather than taking ∆x to 0. 
 

  
 

  

! 

" f (x)

  

! 

" f (x) =
a f (x + 1) - f ( x - 1)[ ]

K !x

  

! 

K !x  " f (x) = a f ( x + 1) - f (x - 1)[ ]

  

! 

f (x + 1)   

! 

f (x - 1)

  

! 

" f (x) =
a f (x + 1) - f ( x - 1)[ ]

K !x   

! 

=
a (a)(x + 1) - (a)(x - 1)[ ]

K (2a)

  

! 

=
(a)(x + 1) - (a)(x - 1)

2K   

! 

=
(ax + a) - (ax - a)

2K

  

! 

=
ax + a - ax + a

2K   

! 

=
a + a
2K

! 

=
2a
2K

! 

=
a
K

  

! 

" f (x) =
a f (x + 1) - f ( x - 1)[ ]

K !x   

! 

=
a ea (x+1) - ea (x"1)[ ]

K !x

  

! 

K !x  " f (x) = a ea (x +1) - ea (x#1)[ ]   

! 

K !x  " f (x) = a e(ax +a ) - e(ax#a )[ ]



  12 

  
 

 
 

 

 
This is the identity for the hyperbolic sine: 
 

 
 

 
 

  
 

 

 

 
 
Why can an a be canceled out in the simple linear equation—but not the exponential equation? 
Notice that y = ax produces an a squared. 
 

  

 
This does not happen for y = e 

ax. 
 

 

 
This exercise to uncover hidden linear relationships for the slopes of curves, I believe, has taught 
me a hidden lesson about operators. Sometimes what looks like a group of discrete terms is, in 
fact, a whole term that cannot be broken except under restricted conditions. 

  

! 

K 2a " f (x) = a e(ax +a ) - e(ax#a )[ ]   

! 

K 2a " f (x) = a e(ax +a ) - e(ax#a )[ ]

  

! 

K 2a " f (x) = aeax e(+a ) - e(#a )[ ]

  

! 

K  " f (x) =
aeax e(+a ) - e(#a )[ ]

2a

! 

"  ea
# e#a = 2 sinh a

  

! 

K  " f (x) =
aeax 2 sinh a[ ]

2a   

! 

=
aeax sinh a[ ]

a

  

! 

Q  K =
sinh a

a

! 

" f (x) = aeax

  

! 

" f (x) =
a (a)(x + 1) - (a)( x - 1)[ ]

K (2a)   

! 

=
a2 (x + 1) - (x - 1)[ ]

K (2a)

  

! 

" f (x) =
aeax e(+a ) - e(#a )[ ]

K  (2a)
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For the general slope formula, I will repeat a key point I made earlier: A coefficient (a) in front 
of x stretches the run (∆x = 2a) by a factor of a. An extra a must appear in the numerator for a 
normalized interval of 2. The 2a in the denominator is the reason for putting an a into the 
numerator of the general slope formula. Only extra a’s may be canceled out with 2a. 
 
The a in ∆x = 2a belongs to the weighting factor K. Coefficient K acts as the transform between 
simple linear relationships and less direct relationships. 




