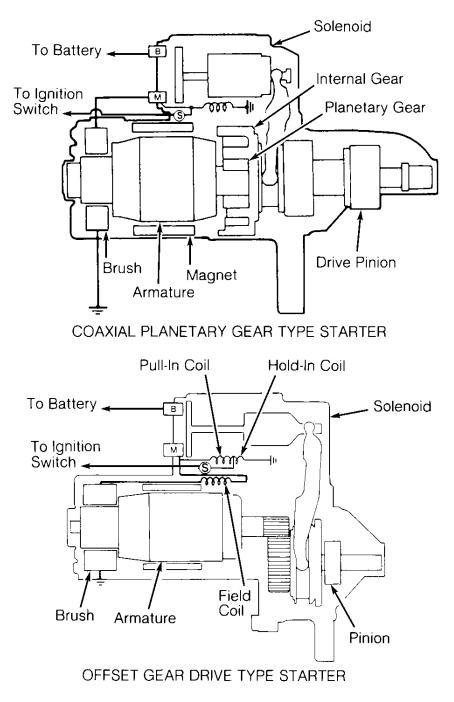
STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

STARTER - REDUCTION GEAR


1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

DESCRIPTION & OPERATION

Reduction gear starter is a conventional 12-volt, 4-pole, brush-type starter. The integral solenoid is attached to the drive housing.

Gear reduction is performed by coaxial planetary gear set. See $\underline{Fig. 1}$.

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

91B01830

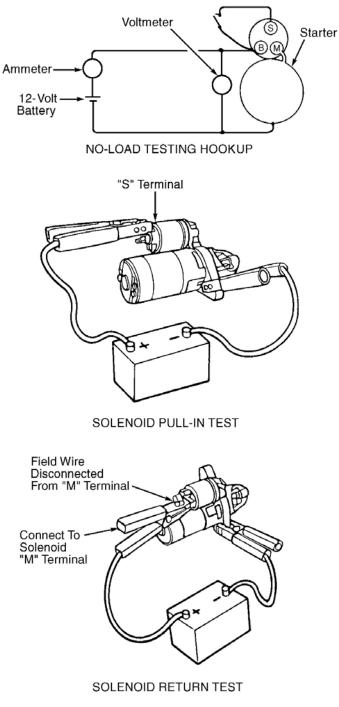
Fig. 1: Reduction Gear Type Starters Courtesy of MAZDA MOTORS CORP.

TROUBLE SHOOTING

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

NOTE: See TROUBLE SHOOTING - BASIC PROCEDURES article.

ON-VEHICLE TESTING


* PLEASE READ FIRST *

- NOTE: On models with anti-theft system, obtain code number and deactivate audio anti-theft system before disconnecting battery.
- NOTE: Before testing, ensure battery is fully charged, battery cables and terminals are clean and tight, and engine grounds are good.

CIRCUIT TEST

If starter does not operate, check voltage at starter "S" terminal with ignition switch in START position. See **<u>Fig. 2</u>**. If voltage is greater than 8 volts and vehicle does not crank, repair or replace starter as required. If voltage is 8 volts or less, check ignition switch, park/neutral switch (A/T) and wiring.

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

91D01831

Fig. 2: Testing Reduction Gear Starter Circuits Courtesy of MAZDA MOTORS CORP.

BENCH TESTING

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

NO-LOAD TEST

Connect fully-charged 12-volt battery, voltmeter and ammeter to starter. See <u>Fig. 2</u>. Using remote starter wires or jumper, engage solenoid. Starter should spin smoothly. Compare readings with specifications. See <u>NO-LOAD TEST SPECIFICATIONS</u> table. If voltage is less than specified, amperage is more than specified or shaft speed is less than specified, disassemble and inspect starter components.

NO-LOAD TEST SPECIFICATIONS

Application	Specification
Voltage (Minimum)	11
Amperage (Maximum)	90
Shaft Speed (Minimum RPM)	3000

SOLENOID TESTS

CAUTION: Perform solenoid tests with starter and solenoid assembled. DO NOT engage starter solenoid for more than 10 seconds during testing or damage to coil winding may result.

Solenoid Pull-In Test

Connect positive battery lead to solenoid "S" terminal and negative battery lead to starter body. See <u>Fig. 2</u>. Starter pinion drive gear should extend outward and stop. If starter pinion drive gear does not extend, replace solenoid.

Solenoid Hold-In Test

After performing solenoid pull-in test, with positive battery lead connected to solenoid "S" terminal and negative battery lead connected to starter body, disconnect field lead ("M" terminal wire) at solenoid. Starter pinion drive gear should remain extended. If starter pinion drive gear returns, replace solenoid.

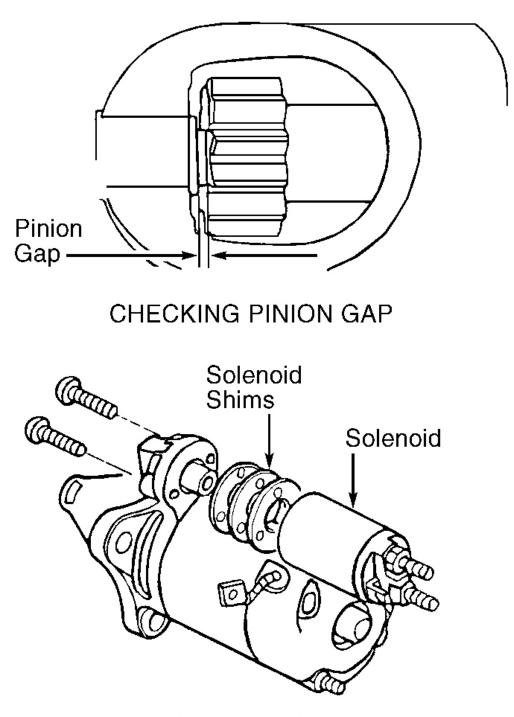
Solenoid Return Test

Disconnect field lead ("M" terminal wire) at solenoid. Connect positive battery lead to solenoid "M" terminal and negative battery lead to starter body. See <u>Fig. 2</u>. Using screwdriver, pry overrunning clutch pinion drive outward. Release screwdriver and ensure overrunning clutch pinion drive returns to original position.

Solenoid

- 1. Disconnect all wires from solenoid, including "M" terminal wire between solenoid and starter. Using ohmmeter, ensure continuity exists between "S" and "M" terminals, and between "S" terminal and solenoid body. See **Fig. 1** and **Fig. 2**. If continuity does not exist between specified terminals, replace solenoid.
- 2. Using ohmmeter, ensure continuity does not exist between "M" and "B" terminals. If continuity exists, replace solenoid.

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear


PINION GAP ADJUSTMENT

- 1. Disconnect field lead ("M" terminal wire) at solenoid. See **Fig. 2**. Connect positive battery lead to solenoid "S" terminal and negative battery lead to starter body. Starter pinion drive gear should extend outward and stop.
- Quickly measure pinion gap between end of pinion drive and circlip retainer. See <u>Fig. 3</u>. DO NOT operate starter solenoid for more than 10 seconds. Pinion gap should be as specified. See <u>PINION GAP</u> <u>SPECIFICATIONS</u> table.
- 3. If pinion gap is not within specification, adjust by increasing or decreasing thickness of solenoid shims located between solenoid and drive housing.

PINION GAP SPECIFICATIONS

Application	In. (mm)
Miata A/T	.0208 (0.5-2.0)

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

ADJUSTING PINION GAP

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

Fig. 3: Checking & Adjusting Pinion Gap Courtesy of MAZDA MOTORS CORP.

ARMATURE TEST

- 1. Place armature in growler. Turn on growler and hold a piece of hacksaw blade over armature. Slowly rotate armature. If hacksaw blade is attracted to core or if it vibrates, replace armature.
- 2. Remove armature from growler. Using an ohmmeter, check continuity between commutator and core. If continuity exists, replace armature. Check continuity between commutator and shaft. If continuity exists, replace armature.
- 3. Check continuity between each commutator segment. If an open exists between any 2 segments, replace armature.

COMMUTATOR TEST

- 1. Clean surface and polish with No. 400 sandpaper if required. If surface is scored, out of round or pitted, turn commutator in a lathe.
- 2. Maximum commutator runout and minimum diameter of commutator must not exceed specification after turning. See <u>COMMUTATOR SPECIFICATIONS</u> table.
- 3. Commutator mica undercut depth should be .020 -.030" (.50 -.80 mm). Minimum mica undercut depth is .008" (.20 mm). If not within specification, undercut to standard depth.

COMMUTATOR SPECIFICATIONS

Application	Maximum Runout In. (mm)	Minimum Diameter In. (mm)
Miata A/T	.001 (.03)	1.21 (30.8)

BRUSH TEST

- 1. Connect one ohmmeter lead to positive brush holder and other lead to negative brush holder. If continuity exists, replace brush holder assembly.
- 2. Check brush length. See **<u>BRUSH LENGTH SPECIFICATIONS</u>** table. If brush length is less than specified, replace brushes.
- 3. Using brush spring scale, measure spring tension. See **<u>BRUSH TENSION SPECIFICATIONS</u>** table. If tension is less than specified, replace brush holder assembly. Ensure brushes move freely in holders.

BRUSH LENGTH SPECIFICATIONS

Application	Standard In. (mm)	Minimum In. (mm)
Miata A/T	.69 (17.5)	.47 (12.0)

BRUSH TENSION SPECIFICATIONS

Application	Standard Lbs. (Kg)	Minimum Lbs. (Kg)
Miata A/T	(1)	(1)
(1) Information is not available at time of publication.		

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

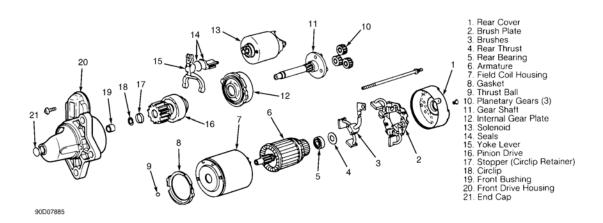
FIELD WINDING TEST

- 1. Connect one ohmmeter lead to field coil lead ("M" terminal wire). Connect other lead of ohmmeter to soldered portion of brush lead. If continuity does not exist, repair or replace field coil.
- 2. Check field coil for short to ground by connecting one ohmmeter lead to field coil lead ("M" terminal wire) and other ohmmeter lead to field coil housing. If continuity exists, repair or replace field coil.

OVERRUNNING CLUTCH PINION DRIVE

Hold overrunning clutch housing and turn pinion gear by hand. If pinion turns in both directions or does not turn at all, clutch is faulty. Replace clutch. DO NOT clean overrunning clutch with solvent, as it is packed with grease and sealed by manufacturer.

REMOVAL & INSTALLATION


NOTE: On models with anti-theft system, obtain code number and deactivate audio anti-theft system before disconnecting battery.

Removal & Installation

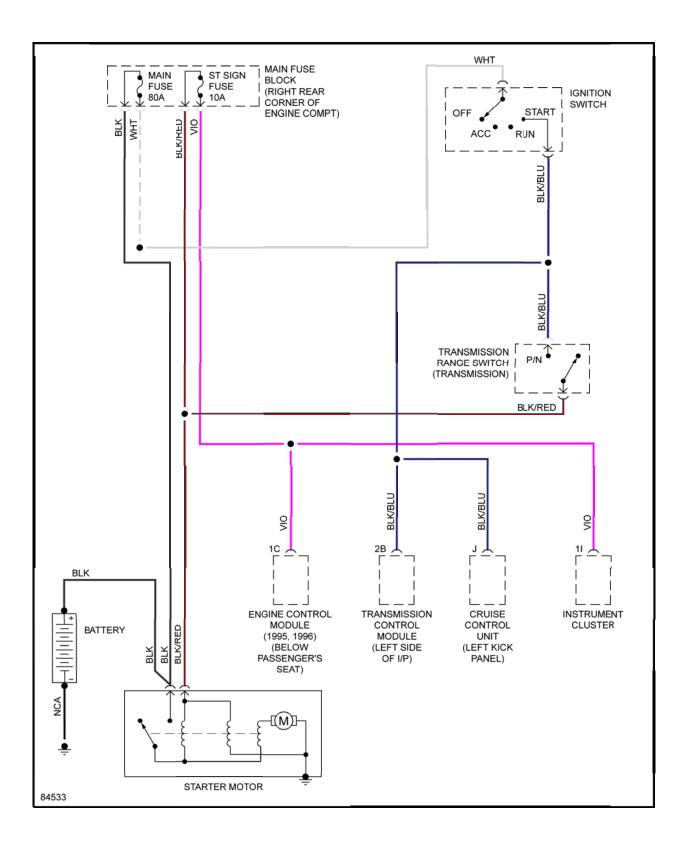
Disconnect negative battery cable. Raise vehicle on hoist. Remove engine undercover (if equipped). Disconnect wiring from starter. Remove starter mounting bolts and starter. To install, reverse removal procedure. Tighten starter mounting bolts to specification. See **TORQUE SPECIFICATIONS**.

OVERHAUL

NOTE: Overhaul procedures are not available at time of publication. See illustrations for exploded views of starters. See Fig. 4.

Fig. 4: Exploded View Of Coaxial Planetary Gear Type Starter Courtesy of MAZDA MOTORS CORP.

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear


TORQUE SPECIFICATIONS

TORQUE SPECIFICATIONS

Application	Ft. Lbs. (N.m)
Starter Mounting Bolts	28-38 (38-51)
Starter-To-Bracket Bolt	12-16 (16-22)
	INCH Lbs. (N.m)
Battery Cable Nut (Solenoid Terminal "B")	80-115 (9-13)

WIRING DIAGRAMS

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

STARTER - REDUCTION GEAR 1997 STARTING & CHARGING SYSTEMS Mazda - Starters - Reduction Gear

Fig. 5: Starting System Wiring Diagram